Robust Gaussian FunctionAlgorithm forMatrix Completion
نویسندگان
چکیده
منابع مشابه
Robust Discrete Matrix Completion
Most existing matrix completion methods seek the matrix global structure in the real number domain and produce predictions that are inappropriate for applications retaining discrete structure, where an additional step is required to post-process prediction results with either heuristic threshold parameters or complicated mappings. Such an ad-hoc process is inefficient and impractical. In this p...
متن کاملRobust Matrix Completion
This paper considers the problem of estimation of a low-rank matrix when most of its entries are not observed and some of the observed entries are corrupted. The observations are noisy realizations of a sum of a low-rank matrix, which we wish to estimate, and a second matrix having a complementary sparse structure such as elementwise sparsity or columnwise sparsity. We analyze a class of estima...
متن کاملNearly Optimal Robust Matrix Completion
In this paper, we consider the problem of Robust Matrix Completion (RMC) where the goal is to recover a low-rank matrix by observing a small number of its entries out of which a few can be arbitrarily corrupted. We propose a simple projected gradient descent-based method to estimate the low-rank matrix that alternately performs a projected gradient descent step and cleans up a few of the corrup...
متن کاملEvaluation and Application of the Gaussian-Log Gaussian Spatial Model for Robust Bayesian Prediction of Tehran Air Pollution Data
Air pollution is one of the major problems of Tehran metropolis. Regarding the fact that Tehran is surrounded by Alborz Mountains from three sides, the pollution due to the cars traffic and other polluting means causes the pollutants to be trapped in the city and have no exit without appropriate wind guff. Carbon monoxide (CO) is one of the most important sources of pollution in Tehran air. The...
متن کاملGaussian Robust Classification
Supervised learning is all about the ability to generalize knowledge. Specifically, the goal of the learning is to train a classifier using training data, in such a way that it will be capable of classifying new unseen data correctly. In order to acheive this goal, it is important to carefully design the learner, so it will not overfit the training data. The later can be done in a couple of way...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Signal Processing, Image Processing and Pattern Recognition
سال: 2016
ISSN: 2005-4254,2005-4254
DOI: 10.14257/ijsip.2016.9.4.32